If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12z^2+13z+1=0
a = 12; b = 13; c = +1;
Δ = b2-4ac
Δ = 132-4·12·1
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*12}=\frac{-24}{24} =-1 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*12}=\frac{-2}{24} =-1/12 $
| -5a-12=48 | | -2w+20=6w+12 | | 75m+53,075=55,275-200m | | 3y-14=53 | | 5y+6y=40 | | 6(x-2)=9-3x+6x | | 9x+3=9(x+9) | | 6(x+1)=7(x+8) | | 170.00+x(0.15)=278.00 | | 1/2(2^x)+4=20 | | 2/9x-5=15 | | (X2-130)=(3x2+54) | | 12-8x=-12+6x | | 2x+5=1x+7 | | 6/x+2=-19 | | 3/11x+3=9 | | 38-8n=-8(3+4n)+3n | | -2x-5=x+3 | | 0=2x+3x+3+4x2+10+x | | 4x+9=-2x-5 | | 10+3b=-5b-26 | | -3(4t-2)+4t=8t-9 | | 120+22x=2(105-4x | | 4t^2-112t+490=0 | | 9n-14=6n=7 | | 17z^2+18z+1=0 | | -4y+6=-5(3y+4) | | 12g=12(2/3g-1)+10 | | 11x+27=11x+27 | | 3.6z=0.7 | | (2t-1)^2(t+4)=0 | | 7+3(x-4)-10=7-45 |